Quantifying the azimuthal plasmaspheric density structure and dynamics inferred from IMAGE EUV

نویسندگان

  • Patrick Sibanda
  • Mark B. Moldwin
  • David A. Galvan
  • Bill R. Sandel
  • Terry Forrester
چکیده

[1] The extreme ultraviolet (EUV) imager on the IMAGE satellite provided the first global images of the plasmasphere leading to enhanced understanding of plasmapause structure and dynamics. However, few studies have investigated the structure and dynamics of the inner plasmasphere (regions interior to the plasmapause), which previous in situ observations have shown to often be highly structured. This study is the first to systematically analyze global images of the density structure of the inner plasmasphere by using data from the EUV imager on the IMAGE satellite. We find that the inner plasmasphere exhibits both fine and meso-scale structure characterized by rapid density fluctuations and density enhancements of varying amplitudes (factors of 2–5) and spatial scales (from 10 s of minutes to 6 hours MLT) that occur regularly in the aftermath of geomagnetic storms. The level of variability within the azimuthal structure was found to increase with increasing geomagnetic activity. The observations suggest that some meso-scale azimuthal density structure observed in the inner plasmasphere is from “fossil” plasmapause features entrained inside the expanding and refilling plasmasphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realistic Magnetospheric Density Model For 29 August 2000

Using a two dimensional image of the Earth’s plasmasphere taken by the Extreme Ultraviolet Imager (EUV) on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft, in-situ electron density measurements from the IMAGE Radio Plasma Imager (RPI) instrument, measurements of magnetospheric mass density inferred from field line resonant frequencies measured by magnetometers on the...

متن کامل

A coordinated ground-based and IMAGE satellite study of quiet-time plasmaspheric density profiles

[1] Cold plasma mass density profiles in the plasmasphere have been determined for the geomagnetically quiet day of 19th August 2000 using the cross-phase technique applied to ground-based magnetometer data from the SAMNET, IMAGE and BGS magnetometer arrays. Cross-phase derived mass densities have been compared to electron densities derived from both ground-based VLF receiver measurements, and ...

متن کامل

Simultaneous remote-sensing and in situ observations of plasmaspheric drainage plumes

Plasmaspheric drainage plumes are regions of dense plasma that extend outward from the plasmasphere into the outer magnetosphere. We present observations of plumes for two events, 2 June 2001 and 26–27 June 2000. Our observations come from two sources. A global perspective is provided by the IMAGE extreme ultraviolet (EUV) imager, which routinely obtains images of the helium portion of the plas...

متن کامل

Global response of the plasmasphere to a geomagnetic disturbance

[1] Global images of the plasmasphere obtained by the Extreme Ultraviolet (EUV) imager on the IMAGE satellite are used to study the evolving structure of the plasmasphere during two geomagnetic disturbances. By tracking the location of the plasmapause as a function of L shell and magnetic local time, quantitative measurements of radial and azimuthal motions of the boundary are made for interval...

متن کامل

Origin and evolution of deep plasmaspheric notches

[1] Deep plasmaspheric notches can extend over more than 2 RE in radial distance and 3 hours MLT in the magnetic equatorial plane, as observed by the extreme ultraviolet (EUV) imager on the IMAGE mission. They are among the largest evacuated features in the exterior plasmaspheric boundary. They can last for days and exhibit a variety of shapes. It appears that weak convection and limited erosio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012